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ABSTRACT
Emerging single cell technologies that simultaneously capture long-range interactions of genomic loci
together with their DNA methylation levels are advancing our understanding of three-dimensional genome
structure and its interplay with the epigenome at the single cell level. While methods to analyze data from
single cell high throughput chromatin conformation capture (scHi-C) experiments are maturing, methods
that can jointly analyze multiple single cell modalities with scHi-C data are lacking. Here, we introduce
Muscle, a semi-nonnegative joint decomposition of Multiple single cell tensors, to jointly analyze 3D
conformation and DNA methylation data at the single cell level. Muscle takes advantage of the inherent
tensor structure of the scHi-C data, and integrates this modality with DNA methylation. We developed an
alternating least squares algorithm for estimating Muscle parameters and established its optimality proper-
ties. Parameters estimated by Muscle directly align with the key components of the downstream analysis of
scHi-C data in a cell type specific manner. Evaluations with data-driven experiments and simulations demon-
strate the advantages of the joint modeling framework of Muscle over single modality modeling and a
baseline multi modality modeling for cell type delineation and elucidating associations between modalities.
Muscle is publicly available at https://github.com/keleslab/muscle. Supplementary materials for this article
are available online, including a standardized description of the materials available for reproducing the work.
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1. Introduction

Interactions between distal genomic regions (i.e., loci) that
become in close proximity of each other through chromatin
loops and topologically associated domains (TADs) are key ele-
ments of gene regulatory mechanisms. High-throughput Chro-
matin Conformation Capture (Hi-C) sequencing technology
(Lieberman-Aiden et al. 2009) captures snapshots of the long-
range interactions of the genomic loci at the whole-genome level.
Data from this technology consists of sequencing of millions
of genomic locus-pairs that are in physical contact and is sum-
marized by a symmetric Hi-C contact matrix, entries of which
represent a measure of physical contact between the locus-pairs.
Recent advancements in single cell sequencing technologies of
Hi-C (scHi-C) enabled profiling interactions between distant
genomic loci in individual cells (Stevens et al. 2017; Ramani et al.
2017; Tan et al. 2021; Ulianov et al. 2021) and even simultane-
ously with their DNA methylation status (sn-m3C-seq (Lee et al.
2019; Liu et al. 2021), scMethyl-HiC (Li et al. 2019)). These new
approaches have the potential to elucidate the interplay between
the epigenetic mechanisms and 3D genome structure in a wide
variety of biological contexts. Computational approaches for
specific scHi-C data inference tasks are appearing rapidly (e.g.,
scHiCluster (Zhou et al. 2019), scHiC Topics (Kim et al. 2020),
Higashi (Zhang, Zhou, and Ma 2022a), BandNorm and scVI-3D
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(Zheng, Shen, and Keleş 2022), and Fast-Higashi (Zhang, Zhou,
and Ma 2022b), scHiCTools (Li et al. 2021)). However, compu-
tational tools for integrating scHi-C with other data modalities
such as transcriptomics, epigenomics, and epigenetics are lag-
ging behind. Notably, the only method that can integrate scHi-C
with scRNA-seq is scGAD (Shen, Zheng, and Keleş 2022). How-
ever, scGAD’s common feature-based integration approach does
not capitalize on the simultaneous profiling of 3D conformation
and DNA methylation status of cells as enabled by sn-m3C-seq
(Lee et al. 2019; Liu et al. 2021) and scMethyl-HiC (Li et al. 2019).
In contrast, Higashi (Zhang, Zhou, and Ma 2022a) facilitates
joint analysis of scHi-C and DNA methylation data; however, the
inference implemented is limited to cell type clustering, and its
practical utility is hindered by its computational requirements,
which led to development of Fast-Higashi (Zhang, Zhou, and
Ma 2022b). Fast-Higashi improved scalability of Higashi signifi-
cantly; however, its current framework and implementation has
not yet been leveraged to handle multiple modalities jointly.

In addition to the lack of integrative modeling approaches
for scHi-C and DNA methylation, another key shortcoming of
exiting scHi-C analysis methods, including scHiCluster, scHiC
Topics, Higashi, scVI-3D, and Fast-Higashi, is a lack of align-
ment between the parameters estimated by these methods and
the key parameters of interest in the scHi-C analysis. While these
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Figure 1. Overview of Muscle multiple single cell tensor model. (a) Each chromosome-specific scHi-C tensor with size lchr × lchr × C is a summation of R “rank-1” modules{
(Achr,r BT

chr,r) ◦ cr

∣∣∣r ∈ 1, . . . , R
}

, where lchr and C denote the # of loci for chromosome chr and the # of cells, respectively. Each module contains three factor loadings. The

data modality common cell loading cr ≥ 0 encodes which cell type the module corresponds to and provides a “label/name tag” for the module. Each of the chromosome-
specific loci loadings Achr,r , Bchr,r encompass structural chromatin characteristics of a specific cell type, and the eigen contact Achr,r BT

chr,r is the resulting interaction pattern

(i.e., eigen contact matrix) of the cell type. Both mCG, mCH methylation matrices with size
(∑

chr lchr
)×C are also summation of “rank-1”modules

{
vk

r ◦ cr

∣∣∣r ∈ 1, · · · , R
}

. vk
r ,

k ∈ {CG, CH}, encodes the methylation profile along the genome for the cell type inferred from the cell loading cr . The sizes of the tensors and the matrices are determined
by lchr and C, where the former varies by the bin size (resolution) of the analysis, and the latter depends on the size of the dataset. For the Kim et al. (2020) dataset, we
have C ≈ 10, 000 and lchr ranges between 49 and 250 at 1Mb resolution. (b) Muscle parameters align with the downstream analysis of interest. 1) The cell loading vectors
{cr |r ∈ 1, . . . , R} enable cell clustering and identification of modules corresponding to each cell type. 2) Low dimensional projection of loci loading Achr,r reveals loci
clustering structure and TADs. 3) The first column vector of loci loading Achr,r encodes A/B compartments which are large-scale genome territories. 4) Direct visualization of
eigen contact matrix Achr,r BT

chr,r reveals contact pattern of the cell type that the rth module corresponds to. 5) The methylation loci loading vector vk
r aligns with the eigen

contact matrix Achr,r BT
chr,r or scHi-C loci loading Achr,r to yield associations between DNA methylation and 3D genome structure of the cell type identified by cell loading

vector cr . The equation within a parenthesis at the bottom corner of each object, for example, (C × 1) for cr , denotes the dimensionality of it.

methods are able to learn latent representations of individual
cells for downstream cell type clustering, inferring chromosome
organization characteristics such as topologically associating
domains (TADs) (Pombo and Dillon 2015), A/B compartments
(Lieberman-Aiden et al. 2009) from their output requires, often
complex, additional downstream processing of the estimated
parameters or denoised data after aggregating contact matrices
of the cells within each inferred cell type. From a strictly statis-
tical perspective, the model parameters are estimated in isola-
tion and without consideration of the intended post-processing
procedures, which might lead to unreliable and sub-optimal
inference.

Here, we develop a new statistical model named Muscle for
Multiple single cell tensors to better align the estimated model
parameters with the key inference parameters of scHi-C analysis
and to enable integration of scHi-C with other data modalities.
Muscle’s multiple tensor framework encodes parameters such
as cell-specific loadings shared by all data modalities, loci load-
ings specific to data modalities, scHi-C eigen contact matrices
with one-to-one alignments to the cell types, A/B compartment
structures, loci groupings or TADs, cell type specific methylation
profiles, all of which are critical for 3D genome and methylation
analysis (Figure 1). A key advantage of Muscle is that it can
be deployed with only scHi-C data as well as with multiple
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single cell data modalities. Application of Muscle to multiple
scHi-C datasets with gold standard (Ramani et al. 2017; Lee
et al. 2019; Li et al. 2019; Kim et al. 2020; Tan et al. 2021)
demonstrates that Muscle performs as well or even better than
existing methods for cell clustering and, more critically, can
infer chromatin conformation structures in a cell type specific
manner. Simulation studies comparing Muscle to a baseline
method reveal consistently better performance by Muscle and
supports the robustness of Muscle to a wide range of signal-
to-noise levels. Muscle in the joint analysis for the sn-m3C-seq
data (Lee et al. 2019; Liu et al. 2021) successfully identifies cell
type specific associations between DNA methylation and 3D
genome structure including TAD boundaries and compartment
territories. Collectively, Muscle represents a significant model-
ing advancement in the joint analysis of scHi-C data with other
data modalities.

2. Muscle Model

2.1. Muscle Model Representation

Muscle is a multiple tensor framework for single-cell multi-
modal omics data. Here, we focus on scHi-C and DNA methy-
lation and illustrate how Muscle parameters provide direct intu-
itive integrative inference of these single cell data modalities.
Figure 1(a) provides an overview of Muscle, which starts out
with a tensor view of multi-modal scHi-C data and single cell
DNA methylation data (top row). For scHi-C data modality,
each set of cis-interaction (i.e., only intra-chromosomal interac-
tions) contact matrices of a single chromosome is viewed as an
order three tensor, with dimensions # of loci on the chromosome
(denoted as lchr), # of loci on the chromosome, and # of cells
(denoted as C). Here, a slice along the cell mode (or dimension)
corresponds to a chromosome-specific scHi-C contact matrix
for a single cell. For the human genome, this results in 23 tensors
with the common cell mode but differing numbers of loci. For
the single cell DNA methylation data, we form a mCG (mCH)
matrix (i.e., order two tensor) with dimensions # of CpGs (non-
CpGs) and # of cells, containing the CpG (non-CpG) site methy-
lation level. The cell mode is shared between the scHi-C and
methylation tensors because of the multi-modality (i.e., scHi-
C and methylation read outs are taken simultaneously from a
single cell) of the data.

After forming the entire order two and three tensors, Mus-
cle parameterizes each of their mean tensors (bottom row of
Figure 1(a)) following a semi-nonnegative Block Term Decom-
position (BTD) form. Specifically, each of the scHi-C ten-
sors is modeled as a summation of R “rank-1” modules,{
(Achr,rBT

chr,r) ◦ cr

∣∣∣r ∈ 1, . . . , R
}

. Note that we abuse the term
“rank-1” to denote a rank-(Kchr, Kchr , 1) tensor for simplicity
in this article, where Kchr is defined as the block rank in BTD
(De Lathauwer 2008). Each rank-1 module captures a latent con-
tact pattern of the data. The two chromosome-specific loci load-
ings Achr,r , Bchr,r ∈ R

lchr×Kchr harbor physical interaction infor-
mation of the module and a nonnegative data modality common
cell loading vector (i.e., loadings shared by all data modalities)
cr ∈ R

C+ captures cell type information of the module. The
methylation matrices are in the form of a semi-nonnegative

matrix factorization, which is similarly a summation of R rank-
1 modules

{
vk

r ◦ cr

∣∣∣r ∈ 1, . . . , R
}

, where k ∈ {CG, CH}. Like-
wise, the data modality common cell loadings cr , shared with
scHi-C, encodes modules specific to cell types, and the methy-
lation loci loadings vk

r identify cell type specific methylation
patterns.

It is worthwhile to note that Muscle’s Block term decompo-
sition (BTD) is similar to but more flexible than widely used
CANDECOMP/PARAFAC (CP) decomposition (De Silva and
Lim 2008; Kolda and Bader 2009; Wang and Li 2020). This
framework expresses a tensor M as a summation of outer prod-
ucts of single vectors, for example, M = ∑R

r=1 λrar ◦ br ◦ cr ,
where ar , br , cr are vectors with unit Euclidean norm, and λr
is a real value that is analogous to an eigenvalue in matrix
case. Our explorations of the scHi-C datasets relieved that
the cell type specific average contact matrices tend to have
higher rank than 1. Therefore, it is more appropriate to model
the estimand as rank K (ArBT

r ) rather than a rank 1 matrix
(ar ◦ br), which underlines the better applicability of BTD on
scHi-C data than CP decomposition. We also note that the
BTD is a special case of the Tucker decomposition (Tucker
1966; De Lathauwer, De Moor, and Vandewalle 2000; Zhang
and Xia 2018) framework, which extends the singular value
matrix into a core tensor C and expresses M as a multipli-
cation of the loading matrices U1, U2, U3 onto the core ten-
sor C. Specifically, BTD is a special case that has a core ten-
sor with block diagonal structure (Rontogiannis, Kofidis, and
Giampouras 2021).

Muscle formulation has two unique components that allow it
to leverage multiple data modalities and enable direct inference
for key parameters of interest. First, each cell loading vector
cr that is common to all data modalities learns the cell type
information jointly across all chromosomes and data modali-
ties, and, hence, is critical for the integrative analysis. Second,
the non-negativity constraint on each cell loading vector cr
facilitates interpretation of each rank-1 module. For instance,
if the cell loading vector of rth module has large values for a
subset of the cells, that is, from the same cell type, the matrix
Achr,rBT

chr,r encodes the contact pattern for these groups of cells.
In addition, the module’s loci loadings Achr,r , vk

r convey the cell
type specific characteristics of genomic loci including A/B com-
partment structure and methylation profiles. We remark that in
a PARAFAC2 (Kiers, Ten Berge, and Bro 1999) decomposition-
based model, which was used by Fast-Higashi (Zhang, Zhou, and
Ma 2022b), similar interpretation is hindered by the sign inde-
terminacy issues of singular vectors, which are the “cell embed-
dings” of the Fast-Higashi. Specifically, aligning of modules with
cell types can not be achieved if a cell embedding vector of the
module has both large negative and positive values for different
cell types. We discuss practical implications of this limitation
in more detail in Section S4. In contrast, Muscle’s formulation
achieves unification between model parameters and the key
parameters needed for downstream inference. In sum, Muscle
enables intuitive and direct interpretation of the model results
as depicted in Figure 1(b). Each of Muscle’s model parameters
or a combination thereof aligns with key inference parameters
of 3D chromatin organization along with the DNA methylation
profile.
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2.2. Statistical Framework of Muscle

In this section, we introduce the statistical framework of Muscle
and a brief overview of parameter estimation of Muscle in the
next section. This exposition uses the following key defini-
tions and notations. A set of sequential numbers, for example,
{1, . . . , K}, are denoted as [K]. For a third order tensor Y ∈
R

d1×d2×d3 , ‖Y‖F denotes the Frobenius norm, while for a vector
v, ‖v‖ refers to the Euclidean norm of the vector. Finally, ◦
denotes outer product.

For a single cell c ∈ [C], we have Chr number of chromo-
somes and a symmetric Hi-C contact matrix of size lchr × lchr for
each chr ∈ [Chr], where each (i, j)th entry of a contact matrix
quantifies the observed physical interaction (e.g., contact) level
between genomic loci i and j. For chromosome chr, the contact
matrices stacked along cells have the same size lchr × lchr . Hence,
the data can be viewed as a (lchr , lchr , C)-dimensional tensor
for each chromosome. We denote each pre-processed (e.g., log
transformed) scHi-C tensor as Ychr ∈ R

lchr×lchr×C, chr ∈ [Chr].
Details about data pre-processing are in Section S3.

The scHi-C tensors {Ychr ∈ R
lchr×lchr×C|chr ∈ [Chr]} and

methylation matrices YCG, YCH ∈ R

∑
chr lchr×C, binned at the

desired resolution (e.g., 500 Kb or 1 Mb), are modeled as

Ychr = Mchr + Echr , εi,j,c,chr
iid∼ N(0, σ 2

1 ),
∀chr ∈ [Chr], (1)

Yk = Mk + Ek, εk
l,c

iid∼ N(0, σ 2
2 ), for

k ∈ {CG, CH},

s.t. Mchr =
R∑

r=1
(Achr,rBT

chr,r) ◦ cr ,

Mk =
R∑

r=1
vk

r ◦ cr , for k ∈ {CG, CH}, (2)

cr ≥ 0, ‖cr‖ = 1, BT
chr,rBchr,r = I,

Achr,r = Bchr,rDchr,r , (3)

and
σ 2

1
σ 2

2
= Nh

Nm
, ∀r ∈ [R], ∀chr ∈ [Chr], (4)

where cr ≥ 0 indicates that all the entries are nonnegative, and
all the chromosome specific signal and noise tensors are with
size Mchr , Echr ∈ R

lchr×lchr×C, and mCG, mCH methylation
signal and error matrices MCG, MCH , ECG, ECH ∈ R

∑
chr lchr×C.

Furthermore, all the error terms Echr , Ek are entry-wise indepen-
dent of each other. Also note that Dchr,r = diag(λchr,r,k)

Kchr
k=1 ∈

R
Kchr×Kchr and λchr,r,k > 0 so that Achr,r ∈ R

lchr×Kchr and Bchr,r ∈
R

lchr×Kchr are equivalent up to multiplication of diagonal matrix
absorbing the magnitude of the module. Here, the total size of
scHi-C tensors is defined as Nh = C × ∑

chr l2chr , and, similarly,
the size of a methylation matrix is defined as Nm = C×∑

chr lchr .
These size terms are leveraged to model the proportion of the
variances of the two sources of data (4). The signal tensor Mchr
is in the form of block term decomposition (De Lathauwer 2008)
and, the mean methylation matrices MCG, MCH have the form
of a semi-nonnegative matrix factorization. A key component of
this integrative framework is that the nonnegative cell loading
vectors cr ∈ R

C+, r ∈ [R], are shared between the models (2),

enabling the cell loadings to be learned by leveraging both data
modalities.

2.3. Muscle Model Estimation

We introduce the estimation problem and algorithm overview
of Muscle. Given the scHi-C tensors {Ychr ∈ R

lchr×lchr×C|chr ∈
[Chr]} and methylation matrices YCG, YCH ∈ R

∑
chr lchr×C,

Muscle solves the Maximum Likelihood Estimation equivalent
problem:

min
Achr,r ,Bchr,r ,cr

vCG
r ,vCH

r

⎧⎨
⎩

1
Nh

Chr∑
chr=1

∥∥∥∥∥Ychr −
R∑

r=1
(Achr,rBT

chr,r) ◦ cr

∥∥∥∥∥
2

F

+ 1
Nm

∑
k∈{CG,CH}

∥∥∥∥∥Yk −
R∑

r=1
vk

r ◦ cr

∥∥∥∥∥
2

F

⎫⎬
⎭ . (5)

To solve this non-convex problem, we derive an Alternating
Least Squares (ALS) algorithm (Algorithm 1 of Section S1).
The ALS algoritm iteratively obtains loci loadings Achr,r , Bchr,r ,
and vk

r given the cell loadings cr , shared by both data modali-
ties across all the chromosomes, and updates cr by pooling all
the loci loading information across the modalities and chro-
mosomes. We derive the optimality properties of the ALS in
Section S2.

3. Benchmarking with Datasets with Gold Standard

3.1. Muscle is Widely Applicable for Cell Type Identification
with Even Single Modality scHi-C Data

We start out by exploring Muscle’s applicability with single
modality scHi-C data by evaluating its cell clustering perfor-
mance with multiple 3D genome datasets (Ramani et al. 2017;
Lee et al. 2019; Li et al. 2019; Kim et al. 2020; Tan et al. 2021).
Details on parameter settings are provided in the Section S3.
Muscle enables cell clustering through the estimated cell load-
ings {cr ∈ R

C+|r ∈ [R]}. Figure 2(a), (b) display the scatterplots
of the first two UMAP coordinates of cell embeddings from
Muscle and other scHi-C analysis methods (Zhou et al. 2019;
Kim et al. 2020; Li et al. 2021; Zheng, Shen, and Keleş 2022;
Zhang, Zhou, and Ma 2022a) for the Li et al. (2019) and Kim
et al. (2020) datasets, which have the least and the most numbers
of cells, respectively. Similar displays for rest of the datasets are
available in Figure S2. Figure 2(a) highlights that Muscle and
Higashi (Zhang, Zhou, and Ma 2022a) are the only models that
can separate Serum 1 cells from the others. Similarly, in Fig-
ure 2(b), the separation of the four major cell types (GM12878,
H1Esc, HFF, HAP1) is more evident for Muscle, scHiC Topics
(Kim et al. 2020), and scVI-3D (Zheng, Shen, and Keleş 2022)
compared to the others. Next, we systematically evaluated the
“cell type identification by clustering” performances of the meth-
ods. We used both the learned embeddings of the methods (e.g.,
cell loadings cr , r ∈ [R] for Muscle) and their low dimen-
sional projections with UMAP and tSNE for cell clustering with
k-means and employed the Adjusted Rand Index (ARI) and
Average Silhouette Score metrics for evaluation based on gold
standard cell labels (Figure 2(c)). Figure 2(d) summarizes the
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Figure 2. Computational evaluation and benchmarking of Muscle cell clustering with scHi-C data. (a) and (b) UMAP coordinates of the cells from Li et al. (2019) and Kim
et al. (2020) scHi-C datasets. Muscle UMAP coordinates are obtained from estimated {cr ∈ R

C+|r ∈ [R]}. Cells are colored based on known cell type labels. (c) Evaluation of
the cell clustering by different methods. Larger and redder circles correspond to larger scores. (d) Summary of the method rankings for each dataset and evaluation metric
displayed in panel (c).

overall ranking of the clustering performances for each of the
combinations in Figure 2(c), and yields that Muscle along with
BandNorm shows the best overall ranking for cell clustering
solely based on scHi-C data. This establishes Muscle’s applica-
bility with scHi-C data even in the single data modality setting.
In addition to the large-scale benchmarking experiments, we
further explored the practical implications of the differences in
the formulations of Muscle and PARAFAC2-based Fast-Higashi
in Section S4.

3.2. Integrative Framework of Muscle Improves Cell Type
Clustering in the Multi-Modal Setting

After establishing Muscle’s on par performance with existing
methods in the single modality setting, we turned our attention
to the integrative framework. We used the Lee et al. (2019) and
Liu et al. (2021) sn-m3C-seq datasets, which simultaneously
profiled 3D genome and DNA methylation in 14 human brain
prefrontal cortex cell types and 10 mouse hippocampal cell
types, respectively. In the integrative analysis, the cell loadings

{cr ∈ R
C+|r ∈ [R]} are learnt using both data modalities.

Figure 3(a), (b) provide a direct comparison of matrix fac-
torization via singular value decomposition (SVD) using only
DNA methylation components (only mCG or only mCH; top
middle, top right panel of Figure 3(a), (c)) and Muscle using
only the scHi-C (top left panel of Figure 3(a), (b)) with the
integrative Muscle (bottom right panel of Figure 3(a), (b)).
Visual inspection of Figure 3(a), (b) reveal how Muscle lever-
ages different data modalities. Specifically, for Lee et al. (2019)
data, the integrative model (bottom right panel of Figure 3(a))
provides complete separation of the inhibitory neuronal cell
types (Ndnf, Pvalb, Sst, Vip cells within red dashed line boxes),
while the results for scHi-C only and mCG only modalities
lack such a separation (top left, top middle). While the OPC
and ODC cells (cells within golden solid line boxes) are not
separated in mCG and mCH only modalities (top middle, top
right), these cells can be separated in the integrative analysis
(bottom right). Moreover, when a more refined set of cell labels
from Luo et al. (2022) is employed, Muscle result aligns with the
new labels for the neuronal cells, while revealing more refined
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Figure 3. Graphical evaluation and benchmarking of Muscle cell clustering with the multi-modal set up. (a) and (b) (Top-left) UMAP coordinates of the cells from Lee et al.
(2019) (or Liu et al. (2021)) sn-m3C-seq data based only on scHi-C modality. Muscle UMAP coordinates are obtained from estimated cell loading vectors {cr ∈ R

C+|r ∈ [R]}.
Cells are colored based on known cell type labels. (Top-middle) UMAP coordinates of the cells from Lee et al. (2019) (or Liu et al. 2021) sn-m3C-seq data based only on
the mCG methylation modality. The UMAP coordinates are obtained from estimated cell loading vectors {cr ∈ R

C+|r ∈ [R]} of SVD. (Top-right) UMAP coordinates of
the cells based only on mCH methylation modality. (Bottom-left) UMAP coordinates of the cells based on both scHi-C and DNA methylation modalities, obtained from
baseline method. The UMAP coordinates are obtained from concatenation of the scVI-3D (Zheng, Shen, and Keleş 2022) embedding of scHi-C and SVD loadings of the DNA
methylation datasets after normalization. (Bottom-right) UMAP coordinates of the cells based on both scHi-C and DNA methylation modalities, obtained from Muscle.

cell labels on the non-neuronal cells (Figure S4). Furthermore,
when Muscle only integrates mCH and scHi-C modalities, it
still achieves the separation of the OPC, ODC, and Endo cells.
This illustrates that while the mCH modality completely mixes
these cell types, leveraging scHi-C modality (Figure S5) aids in
their separation. We also compared the Muscle cell clustering
results in the multi-modal setting (Figure 3(a) bottom right)
with a baseline multi-modal approach (Figure 3(a) bottom left),
where we leveraged scVI-3D (Zheng, Shen, and Keleş 2022)
for the analysis of the scHi-C modality and concatenated the
resulting cell embeddings with the ones obtained from SVD
on mCG, mCH matrices after normalization. Overall, the cell
type separation from this baseline approach (Figure 3(a) bottom
left panel) is inferior to that of Muscle depicted in Figure 3(a),
especially for the ODC and OPC cells and the Pvalb and Sst
cells. The overall performances reveal the marked improve-
ment by the Muscle multi modal setting (left two columns of
Table 1).

Analysis of a more recent sn-m3C-seq dataset from mouse
hippocampus (Liu et al. 2021) provided insights similar to those
of the above analysis. Specifically, results from the analysis of this
dataset revealed that the integrative Muscle enabled complete
separation of the cell types CA1 and CA3 (cells within gray
dashed line boxes in Figure 3(b) bottom right). These cell types
appeared to be less separated in the scHi-C only and mCG only
analysis (Figure 3(b) top left and middle). In this case, Muscle
leveraged the cell type separation information of CA1 and CA3

Table 1. Numerical evaluation and benchmarking of Muscle cell clustering with the
multi-modal set up.

Lee et al. Liu et al.

Modality ARI KNN ARI KNN

All (Baseline) 0.67 0.93 0.61 0.85
All (Muscle) 0.81 0.93 0.87 0.93
mCG 0.58 0.82 0.57 0.86
mCH 0.59 0.83 0.83 0.92
scHi-C 0.80 0.85 0.67 0.89

NOTE: For each of the Lee et al. (2019) and Liu et al. (2021) data, two metrics are
investigated for the evaluation. Left : The ARI scores from k-means clustering of
the cells with the learned embeddings under single (scHi-C only, mCG only, mCH
only) and multi-modal settings (Muscle, baseline). Right : K Nearest Neighborhood
(KNN) classification accuracy with cell loadings as features and gold standard cell
type labels as classes. KNN results are averaged over 20 sets of training-test data
splits where test data harbored 10% of the randomly selected cells. The number of
neighbors was set as K = 20. The bold value for each column denotes the largest
(ARI or KNN) score for the column.

cells from the mCH modality (Figure 3(b) top right). Similarly,
while delineation of the cell type ASC (cells within black solid
line box) from only the mCH modality exhibited ambiguity
(Figure 3(b) top right), the integrative Muscle model achieved
good separation of this cell type from the others (Figure 3(b)
bottom right) by leveraging the cell type separation information
from the scHi-C modality (Figure 3(b) top left). The overall
performances of these settings are summarized in the right two
columns of Table 1.
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Figure 4. Cell type specific eigen contact captures by Muscle. (a)–(c) Muscle cell loading vectors c1, c7, c8 depicted as barplots, respectively. The cell loading vectors are
constrained to be nonnegative and yield the representative cell type of each module. Bars are colored based on the true cell type labels of the cells in panel (g). Top
and bottom 20 cell loadings are displayed for brevity. (d)–(f ) Visualization of Muscle eigen contact matrices (A1,r BT

1,r terms) for r = 1, 7, 8, which capture grand average,
GM12878 and HFF contact patterns. In panels (d)–(f ), darker entries indicate higher interactions between the loci. (g) Heatmap of the entire set of Muscle cell loading vectors
{cr ∈ R

C+|r ∈ [R]}. Each row displays the estimated cell loadings cr of the module and each column corresponds to a cell. (h) HiCrep score comparison of Muscle eigen
contact matrices A1,r BT

1,r of modules r = 7 (GM12878), r = 8 (HFF), r = 9 (H1Esc), and r = 10 (HAP1) against the gold standard cell type specific bulk contact matrices. The
y-axis denotes inferred cell type specific eigen contact matrices and the x-axis denotes the cell type specific bulk contact matrices.

3.3. Muscle Yields Cell Type Specific Modules that
Delineate Cell Type Specific Contact Matrices

Next, we explored the inference readily available from Muscle for
downstream scHi-C analysis with the Kim et al. (2020) dataset
that harbored five human cell lines (GM12878, H1Esc, HAP1,
HFF, and IMR90). Muscle’s rank-1 modules, (Achr,rBT

chr,r) ◦ cr ,
capture parsimonious representations of the cell types. The mag-
nitudes of the Muscle cell loading vectors, cr ≥ 0, delineate
cells corresponding to the same cell type/state, therefore, link-
ing modules to specific cell groups. Consequently, the corre-
sponding eigen contact, Achr,rBT

chr,r , for module r describe the

denoised specific contact matrix for the corresponding cell type.
For example, Muscle cell loading vector c1 has constant values
across the cells (Figure 4(a)). Hence, this module can be inter-
preted as a grand mean pattern of the entire cell types, and the
eigen contact matrix A1,1BT

1,1 (Figure 4(d)) corresponds to the
grand mean contact matrix. We further note that c7 has exclu-
sively large values for the GM12878 cells (Figure 4(b)); hence,
the eigen contact matrix A1,7BT

1,7 (Figure 4(e)) corresponds to
the mean contact pattern of chr 1 in GM12878 cells adjusting for
the grand mean pattern captured by the first module. Similarly,
A1,8BT

1,8 (Figure 4(f)) displays the HFF specific contact pattern
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because the cell loading vector c8 of this module is specific to
cell type HFF, that is, with large positive entries for HFF cells
(Figure 4(c)). Investigation of this type of module identification
by cell loading vectors for neuronal cells of Lee et al. (2019) are
reported in Figure S6.

To validate that the eigen contact matrices, A1,rBT
1,r , are

indeed cell type specific, we calculated HiCRep scores (Yang
et al. 2017), a modified version of Spearman correlation to
compare two Hi-C contact matrices, between cell type specific
contact matrices (A1,rBT

1,r , where different r values correspond
to different cell types) and cell type specific contact matrices
generated from the gold standard cell type specific bulk data
(Kim et al. 2020). The heatmap in Figure 4(g) displays the entire
cell loading vectors cr and clearly demarcates modules specific to
each cell type. While several cell types have multiple modules, we
chose r ∈ {7, 8, 9, 10}, each of which had the largest size

∥∥A1,r
∥∥

F
(i.e., parameters with the largest sizes) among the modules cor-
responding to the cell types GM12878, H1Esc, HFF, and HAP1,
respectively. Figure 4(h) demonstrates that the similarity score is
the highest when the eigen contact matrix A1,rBT

1,r of a cell type
is compared against its own gold standard data (i.e., scores along
the diagonal). Collectively, these results further proffer the main
advantages of Muscle’s tensor decomposition framework which
targets the key parameters. Further exemplary exploration of
Muscle’s eigen contact maps to investigate cell type specific gene
regulation or the associations between additional experimental
variables and contact patterns of locus-pairs are illustrated in
Section S5.

3.4. Muscle Yields Cell Type Specific TADs and A/B
Compartments

Topologically associating domains (TADs) constitute large
genomic regions with larger numbers of interactions between
loci within the region compared to interactions of loci with the
loci outside the region. TADs are highly cell type specific since
they recapitulate cell type specific regulation (Yu and Ren 2017).
Muscle parameters Achr,r reveal TADs for module r, and the cell
type of the module is delineated by the positive entries of cr . We
note that for elucidating TADs, the loci loading Achr,r is used
instead of Bchr,r , which are identical up to module magnitude
multiplication. Achr,r is more appropriate for inference since it
absorbs the magnitude of the module r (see (3)).

We next investigated the TADs for the Kim et al. (2020)
data analyzed in the previous section. Figure S9(a) displays the
UMAP of loci loadings, A1,7, of module 7, which corresponds
to cell type GM12878 (as depicted in Figure 4(b)), concatenated
with A1,1 which captures the grand average pattern across all the
cells (as depicted in Figure 4(a)), for chr 1. Labeling these loci
according to the gold standard TADs identified from GM12878
bulk data (Figure S9(b)) reveals that the loci loadings of Muscle
organize the loci within a chromosome in a way consistent
with their TAD structures. Next, we formally evaluated the per-
formance of TAD calling from estimated Muscle loci loadings
by regarding the known TADs from a cell type’s bulk contact
map as the gold standard. TADs from Muscle are identified by

a k-means approach on the aggregated loci loadings matrices
(Achr,1 and Achr,r) and compared with the gold standard based
on precision and recall metrics. For both the gold standard TADs
and the Muscle inferred TADs, we defined the TAD closest to the
first diagonal entry of a contact map as TAD #1 and defined the
TAD closest to the last diagonal entry as TAD #K. We carried out
the analysis throughout chromosomes and the four major cell
types for the Kim et al. (2020) dataset (Figure 5(a)). This analysis
yielded precision and recall values around 80%–82% across cell
types. Further comparison of Muscle’s loci loading clustering
based TAD interference to a pseudo-bulkification (aggregation
over cells from a cell type) based TAD inference on the Muscle’s
denoised tensor M̂chr is provided in Figure S10(a).

A/B compartments, which constitute genome territories with
high (A) or low (B) gene expression compared to other territo-
ries, is another class of genome compartmentalization that can
be inferred from scHi-C data (Lieberman-Aiden et al. 2009).
In addition to identifying TADs, the first column vector of
Achr,r for each chr ∈ [Chr] and r ∈ [R] provides the A/B
compartment structures in a cell type specific manner. This
is because the loci loadings Achr,r , Bchr,r are obtained from an
eigen decomposition of the projected scHi-C tensor Ychr onto
the subspace spanned by cr (Algorithm 1), and hence, the first
column of Achr,r is formed by the multiplication of the largest
eigenvalue and the corresponding eigenvector. Consequently,
the first column of Achr,r captures the major contact pattern of
the module r, which would represent the largest scale genome
territory, that is, A/B compartments. Figure 5(c) displays the
exact same loci clustering of A1,7 as in Figure S9(a) where the
labels of loci are obtained by the sign of the first column of
A1,7. The loci with blue colors in Figure 5(c) are inferred to
be in A compartments, while the loci with red colors are in
the B compartments. We validated this labeling by comparing
it to the labeling from the gold standard GM12878 bulk Hi-
C data’s A/B compartment structure (Figure 5(d)). We further
evaluated the A/B compartment inference for each cell type (as
identified by modules r ∈ {7, 8, 9, 10}) by comparing inferred
compartmentalizations (averaged over all the 23 chromosomes)
with those from the cell type specific bulk data (Figure 5(b)).
This evaluation yielded that, on average, Muscle identified 75%
of the gold standard A and B compartment loci correctly. We
further evaluated the correlation between Muscle loci loading
vector and the PC1 of the cell type specific bulk contact map,
which are used for inferring A/B compartments (Figure S10(c)).
Overall, the estimation targets of Muscle directly match the
parameters of interest in scHi-C data analysis and the estimated
parameters readily reveal TAD and A/B compartment structures
of the cell types without additional downstream analysis. As a
remark, the pseudo-bulk analysis of Muscle for TAD and A/B
compartments aligns quite well with those from loci loading
matrices (Figure S10(a) and (b)), supporting that each rank-1
module of Muscle captures general 3D genome characteristics.
However, a more refined result for the TAD and A/B com-
partment can be obtained from the pseudo-bulkification of the
denoised tensor, which is a collective of the Muscle parameters
(Figure S11).
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Figure 5. TAD and A/B compartment identification from estimated Muscle parameters. (a) Evaluation of TAD inference of Muscle based on the gold standard TADs from
cell type specific external bulk Hi-C data. Recall is evaluated by fixing each gold standard TAD and calculating the proportion of loci contained in the corresponding TAD
identified by Muscle loci loading clustering. For precision, each Muscle inferred TAD is fixed and the proportion of loci contained in the corresponding gold standard TAD
is calculated. Within each panel, distribution of precision and recall values across all the chromosomes within a cell type are displayed. (b) Evaluation of A/B compartment
territory inference of Muscle based on the gold standard A/B compartments from cell type specific bulk Hi-C data. Each barplot represents a cell type (module) and displays
the mean proportion of correctly inferred A (or B) compartments averaged across the chromosomes. The first element of a label (e.g., AB) is for gold standard compartment
and the other element is for inferred compartment. The regions corresponding to the centromere are excluded from the analysis. (c) UMAP coordinates of chr 1 loci from
Figure S9(a) colored with respect to the signs of the first column of A1,7, with “+” depicted in blue and corresponding to A compartment and “-” depicted in red and
corresponding to B compartment. (d) UMAP coordinates of chr 1 loci from Figure S9(a) colored with respect to the gold standard A/B compartment results from bulk
GM12878 Hi-C data.

3.5. Muscle Unveils Cell Type Specific Associations
between Chromatin Conformation Structures Inferred
from scHi-C Data Modality and DNA Methylation
Modality

DNA methylation in both the CpG and non-CpG sites is gen-
erally negatively correlated with the gene expression levels in
mammalian neurons (Lister et al. 2013; Luo, Hajkova, and Ecker
2018). Using Muscle integrative analysis results of Lee et al.
(2019) sn-m3C-seq data, we explored whether the A/B com-
partment structure of the loci inferred from scHi-C modality
loci loadings Achr,r[ , 1] associated with the Muscle denoised
methylation level for each cell type corresponding to the module
r. Specifically, we investigated the association between genome
compartmentalization and DNA methylation pattern in an exci-
tatory neuronal cell type (L5) and in an inhibitory neuronal
cell type (Vip). These two cell types are well-separated in the
integrative Muscle analysis (bottom right panel of Figure 3(a)).
We observed that there exist association between fitted methyla-
tion (aggregated over a cell type) and A/B compartmentalization
(Figure 6(a) and (d)) with A compartment having lower DNA

methylation level in general. It also revealed that the association
is cell type specific. In Vip cells, loci in B compartment territory
have significantly higher methylation levels on CpG sites than
those of the loci in the A compartment (p = 9.7 × 10−6),
while the association in L5 cells was not as significant as that
of Vip cells (p = 0.07). While the non-CpG methylation over
the A and B compartment showed same directionality for the
association as CpG methylation, the association strength does
not seem clear across the two cell types (with p = 0.03 and p =
0.34). Evaluation of association between pseudo-bulk methyla-
tion and A/B compartmentalization from PC1 of pseudo-bulk
Hi-C contact map confirmed this observation (Figure S13).
These reinstate that association of loci methylation levels with
genome territorial structures is cell and methylation site type
specific.

We next exploited the integrative analysis results from the
point of CCCTC-binding Factor (CTCF) DNA binding pro-
tein. The activities of CTCF are inhibited by DNA methylation
around the CTCF binding sites (Wang et al. 2012). In particu-
lar, DNA methylation plays a significant role in disruption of
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Figure 6. Association analysis of methylation patterns with the broader 3D chromatin structures. (a) and (d) Distributions of fitted (and scaled) methylation levels averaged
over cell type L5(a) and Vip(d) stratified with respect to CpG (mCG) and non-CpG (mCH) and within A/B compartments for L5 (panel a, identified from A1,15[ , 1]) and Vip
(panel d, identified from A1,21[ , 1]) cells. Differences in methylation levels are evaluated with a Wilcoxon rank-sum test. (b) and (e) Top row of the panel: the dotted red line

displays the inferred methylation pattern along chr 1 loci, scaled as vCG
1 /

∥∥∥vCG
1

∥∥∥ + vCG
r /

∥∥∥vCG
r

∥∥∥. The solid black line represents insulation scores obtained from scaled eigen

contact matrices, A1,1BT
1,1/

∥∥∥A1,1BT
1,1

∥∥∥
F
+A1,r BT

1,r/
∥∥∥A1,r BT

1,r

∥∥∥
F

. Bottom rows of the panels display scaled eigen contact matrices. In (b) and (e) methylation loadings of loci are

used to highlight the major patterns captured by Muscle, while (a) and (d) showcase the entire summarization by the Muscle fit. (c) and (f ) Comparison of average absolute
mCG methylation loadings of loci for locus-pair grouped as “Enriched”(with absolute eigen contact values, i.e., differential interactions, in the top 0.5% ) and “Not-enriched”
(with absolute eigen contact values below the top 0.5% ) for Vip (top row) and L5 cell type (bottom row). Vertical lines mark the median of the distributions. The results for
other cell types are available in Figure S8.

CTCF binding around key tumor suppressing genes in cancer
(Rodriguez et al. 2010). CTCF is also a key player in folding of
chromatin into domains. Specifically, TAD boundaries, where
cohesin and CTCF form a DNA binding complex to hold the
DNA loops together, are enriched for CTCF binding sites (Rao
et al. 2014; Pombo and Dillon 2015). Furthermore, previous
studies on hierarchical structure of the genome, that is, meta-
TADs sizes of which are on average 10Mb (Esposito et al. 2020),
found that the CTCF binding activity is enriched at the bound-
aries of meta-TADs, while the enrichment is maximized at the
scale of TADs (Fraser et al. 2015; Zhan et al. 2017). As a result, we
expect that the meta-TAD boundary regions have more CTCF
binding, and hence less DNA methylation that would hinder
CTCF binding activity. Figure 6(b), (e) display methylation
patterns from the methylation loci loading parameter vCG

r and
the insulation scores (Gong et al. 2018), which quantify how
unlikely a locus is to be a (meta-)TAD boundary, from the
eigen contact matrix. These comparisons reveal that insulation
score patterns align with the large-scale methylation patterns.
Considering the concept of meta-TADs at this 1Mb resolu-
tion, it further corroborates that genomic loci that are likely

to be at meta-TAD boundaries (i.e., with a drop in insulation
scores marked with the blue dashed lines) have low methylation
levels.

Finally, we asked whether an exploratory analysis of module-
specific Muscle eigen contact maps and methylation loci load-
ings can yield associations between methylation levels and dif-
ferential interactions. Recalling that an eigen-contact map cap-
tures a cell type’s differential interactions compared to the grand
mean and the methylation loading summarizes the cell type’s dif-
ferential methylation pattern compared to the mean, we queried
how the differential methylation patterns of locus-pairs with
differential interactions for a cell type varied. Figure 6(c) and
(f) highlight that the loci enriched for differential interactions
have significantly higher levels of differential methylation for
both the Vip and L5 cells and the methylation sites (CpG sites,
p < 8.9e − 15 for L5, p < 4.6e − 30 for Vip, and non-CpG
sites, p < 1.5e − 24 for L5, p < 2.5e − 10 for Vip with one-
sided Wilcoxon rank sum test). These results, obtained directly
from the estimated Muscle parameters, indicate that the parts of
the genome with differential contacts also exhibit higher levels
of differential methylation.
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4. Simulation Studies

Datasets with known cell types enabled us to illustrate the supe-
rior performance of the joint analysis with Muscle against both
the single modality analysis and a baseline integrative approach.
We further studied advantages of the tensor decomposition
framework of Muscle over the matricization-based baseline
method with simulation experiments. In these experiments, we
ensured that the data generation process does not conform with
Muscle’s model (given in (1)–(4)) to quantify Muscle’s robust-
ness against model misspecification.

4.1. Data Generation

The scHi-C tensor Y ∈ R
40×40×120 and the DNA methylation

matrix Y ∈ R
40×120, for 40 genomic loci and 120 cells across

three cell types (with 40 cells from each cell type), were simulated
from the following Negative binomial models:

Yijc
iid∼ NB

(
Mijc, size = Mijc

φ1 − 1

)
, for all

i ∈ [40], j ∈ [40], c ∈ [120]
Ylc

iid∼ NB
(

Mlc, size = Mlc
φ2 − 1

)
, for all

l ∈ [40], c ∈ [120]

M =
3∑

r=1
(ArBT

r ) ◦ cr , Ar , Br ∈ R
40×2,

M =
3∑

r=1
vr ◦ cr , cr ≥ 0, ‖cr‖ = 1,

vr ∈ R
40,

φ1
φ2

= Nh
Nm

= 40.

We generated three cell types by setting the entries 1 to 40
of c1, 41 to 80 of c2, and 81 to 120 of c3 to 3.1 and all the
other entries of the cell loading vectors to 1 before size nor-
malization. For each module r, r ∈ [3], the first column of
loci loading matrix Ar ∈ R

40×2 is set to represent the A/B
compartment structure (checker board-like pattern) of a contact
matrix and the other column is set to represent a single TAD
structure (square box-like pattern) along the diagonals of a
contact matrix. The scHi-C loci loading matrix Br ∈ R

40×2 is a

column-wise normalization of Ar so that it becomes equivalent
to Ar up to module size magnitude. This formulation, in turn,
generates each eigen contact of the contact matrix ArBT

r as in
Figure S14(a)–(c). The methylation loadings vr are randomly
generated from a Poisson distribution with rate parameter λ =
0.23. The constructed methylation modules vr ◦ cr are displayed
in Figure S14(j)–(l). The distributional assumptions on Y and Y
result in

E[Yijc] = Mijc, Var(Yijc) = Mijc + M2
ijc

Mijc
(φ1 − 1) = Mijcφ1

E[Ylc] = Mlc, Var(Ylc) = Mlc + M2
lc

Mlc
(φ2 − 1) = Mlcφ2.

This data generation set up further ensures that Mijc ≈ Mlc
∀i, j, l, c (Figure S15(e)). Consequently, the proportion of the
variances between two data modalities approximately satisfies
var(Yijc)/var(Ylc) ≈ φ1/φ2, and allows us to vary the propor-
tion of the variances of the two sources of data by modulating
φ1, φ2. Under this data generation scheme, the resulting scHi-C
and DNA methylation data exhibit general characteristics of the
observed scHi-C and DNA methylation datasets (examples are
provided in Figure S15(a)–(d)).

4.2. Simulation Results

We varied the noise level of the methylation data as φ2 ∈
{1.1, 1.2, . . . , 3} and that of the scHi-C data φ1 is automati-
cally determined based on the proportional variance construc-
tion. For each of the φ2 values, we generated 100 simulation
replicates and quantified the performances of Muscle and the
matricization-based baseline method. For each Muscle fit, the
proportion of the variance was set to 40. The rank R was set
R = 4 for both methods.

Comparison of the cell clustering of the methods revealed
that Muscle results in significantly higher ARI scores than the
baseline method, with a median difference of 0.1 across all the
noise levels, φ2 (Figure 7, p < 2e−16 with t-test, when adjusted
for the noise level).

We next investigated how well each method recovers the
true means M and M. Specifically, we evaluated the Spearman
correlation between the true M and estimated M̂ for the scHi-
C modality and the Spearman correlation between the true M

Figure 7. Evaluation of multi-modality analysis by Muscle and the matricization-based baseline method with simulation studies. (a) ARI scores of the methods across all
the noise levels φ2 averaged over 100 replicates. (b) Solid lines: Spearman correlations of the methods between the true scHi-C mean tensor M and the estimated mean
tensor M̂ across noise levels φ2 averaged over 100 replicates. Dashed lines: Spearman correlations of the methods between the true mean DNA methylation matrix M and
the estimated mean methylation matrix M̂ across noise levels φ2 averaged over 100 replicates.
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and estimated M̂ for the DNA methylation modality for both
of the methods. The solid lines in Figure 7(b) illustrates that
the estimates from the baseline model have almost zero corre-
lations with the true mean scHi-C contact matrices, whereas
Muscle estimates have markedly higher correlation values (≈
0.7) across all the noise levels φ2. This is also evident visu-
ally from Figure S14. While the baseline method results in
markedly noisy eigen contacts (Figure S14(g)–(i)), the Muscle
eigen contacts reasonably capture the cell type specific modules
(Figure S14(d)–(f)). Likewise, the dashed lines in Figure 7(b)
also illustrates that the baseline model results in low correlations
with the true mean DNA methylation matrix (≈ 0.15), while
Muscle achieves markedly higher correlation values (≈ 0.9)
across all the noise levels φ2. This can also be visualized in
Figure S14(j)–(r).

More detailed results on the cell clustering and the recovery
of the mean scHi-C tensor M and mean methylation matrix
M are provided in Figure S16. These specifically summarize the
results based on the setting with the noise level φ2 = 1.1. The
UMAP plots of the cell loadings depicted in Figure S16(a)–(b)
show that Muscle exhibits more apparent cell clustering than the
baseline method (clustering ARIs of 0.3 and 0.5 for the baseline
method and Muscle, respectively). Figure S16(c)–(d) directly
compare the true and the estimated mean methylation matrices
and indicate that Muscle’s recovery of the mean methylation
matrix better aligns with the true M compared to that of the
baseline method. In addition, association between the true mean
scHi-CM and the Muscle estimate is more evident compared to
the estimate from the baseline method (Figure S16(e)–(f)).

In order to further explore the advantages of Muscle model
parameterization, we carried out a comparison between cell
type specific contact matrices estimated by the pseudo-bulkified
denoised data from the baseline method and the Muscle eigen
contact matrix. For the baseline method (Figure S16(a)), we
leveraged the cell labels from k-means clustering to generate cell
type specific pseudo-bulk differential contact matrices as esti-
mators of the cell type specific contact patterns (Figure S17(a)).
In contrast, Muscle first identified which cell type each rank-
1 module belonged to based on the cell loading vector (cr)
(Figure S17(d)), and reported the corresponding eigen contact
matrix (ArBT

r ) as the estimator of the cell type specific contact
patterns (Figure S17(c)). It is evident that the estimator derived
from Muscle is markedly less noisy and more similar to the true
contact pattern of cell type C (depicted in Figure S17(b)) than
the one from the pseudo-bulkified denoised data of the base-
line method. Furthermore, evaluations across 100 simulation
replicates yielded that Muscle eigen contact matrix correlated
markedly better with the true contact matrix with a correlation
of 0.69, while that of the baseline method yielded a correlation
of 0.22.

In addition, we also compared loop calling on the estimated
contact matrices. Specifically, we compared the loops identified
from cell type C’s (a) true mean contact matrix; (b) Muscle eigen
contact matrix (Module 1+Module 4); (c) The pseudo-bulkified
contact matrix of the baseline method. The loops were identified
by Fit-HiC (Ay, Bailey, and Noble 2014) for all the contact matri-
ces. This comparison revealed that 65% of the true significant
loops (from true mean contact matrix) were identified based on

Muscle eigen contact matrix (q-value<0.1) and 71% of the loops
identified from Muscle eigen contact matrix were contained in
the true significant loops. In contrast, 52% of the true significant
loops were identified based on the pseudo-bulkified contact
matrix of the baseline method and 64% of the loops identified
based on the baseline method were contained in the true set.
Overall, these results highlight the power of Muscle estimated
parameters for downstream analysis.

5. Discussion

We presented Muscle as a joint tensor decomposition framework
for integrative analysis of scHi-C and DNA methylation data.
Computational experiments with labeled real data and simu-
lated data demonstrated that Muscle’s integrative framework
can leverage multiple single cell data modalities to enhance
cell type identification. Furthermore, Muscle performed on par
or better than existing approaches when presented with single
modality scHi-C data, and natural baseline approaches based on
concatenation for integrative analysis. In addition to on par per-
formance in cell type identification, Muscle exhibits clear advan-
tages over the baseline approaches for the integrative analysis
in terms of statistical interpretation, algorithmic optimality, and
information transfer between modalities (Section S6). Notably,
as a key advantage, we showcased how Muscle’s parameteriza-
tion encodes key parameters of interest (cell type specific contact
matrices, TADs, A/B compartments).

In applications of Muscle, we observed that the Muscle cell
loading parameter that is shared across multiple modalities plays
a critical role in integrative inference. This parameter can be
sensitive to the level of variability between the data modalities,
necessitating appropriate modeling of the variance terms to
balance the contribution of different modalities during integra-
tion. We used a proportional variance assumption for the scHi-
C and methylation modalities and were able to capitalize on
the discriminative abilities of the individual modalities for cell
types (Figure 3). A more flexible variance modeling approach
might be beneficial for integration of additional data modalities.
Correcting for batch effects can have critical implications for the
single cell data analysis (Korsunsky et al. 2019; Zheng, Shen,
and Keleş 2022). Muscle, in general, relies on excluding rank-
1 modules, cell loadings of which significantly associate with
the batch labels, and empirical observations suggest that the
band debiasing step of Muscle described in Section S3 corrects
for mild batch effects as in Zheng, Shen, and Keleş (2022)
(Figure S3). While Muscle relied on the Gaussian distribution
assumption on the transformed count data, it can be relaxed
with tensor models incorporating count distributions (Hong,
Kolda, and Duersch 2020). Another important point in tensor
analysis is the selection of the tensor rank. Rank determination
in tensors is an NP-hard problem (Håstad 1990) and Fast-
Higashi relies on relatively high rank. In Muscle, we employed
a heuristic approach to penalize over-fitting; however, a direct
regularization, for example, group LASSO (Yuan and Lin 2006),
on rank-1 components could also be employed. In addition, gen-
eralizing the block term decomposition rank Kchr to be specific
to each module across r ∈ [R] with a more explicit guidance on
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the choice with a theoretical guarantee could be an interesting
extension for the Muscle model.

Lastly, while Muscle provides integration, inference, and
interpretation advantages compared to alternative methods, its
current implementation is relatively slow compared to some of
the fast scHi-C analysis methods and warrants further advance-
ment. Specifically, for Lee et al. (2019) scHi-C data at 1Mb
resolution, an unoptimized implementation of Muscle required
18 hr (23 cores CPU), while Higashi took 49 hr (10 cores
CPU), scHiC Topics took 36 hr (1 core CPU), scVI-3D took
4 hr (23 cores GPU), Fast-Higashi took 1 hr (23 cores CPU),
scHiCluster took 30 min (23 cores CPU), and BandNorm took
15 min (23 cores CPU). The speed bottleneck of Muscle is
mainly due to additional decomposition steps for estimating loci
loadings, which encode key downstream parameters of interests,
and warrants further computational developments.

Supplementary Materials

The supplementary materials include 1. Details of the Muscle algorithm, 2.
Proof of Lemmas for the Muscle algorithm updates, 3. Details on data pro-
cessing, 4. Comparison of Muscle tensor formulation against PARAFAC2
formulation, 5. Additional downstream analysis, 6. Discussion of additional
advantages of Muscle over the baseline multi-modal methods, 7. Additional
figures from Figure S1 to S17, 8. Author Contributions Checklist (ACC)
Form.
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